Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indoor Air ; 32(8): e13099, 2022 08.
Article in English | MEDLINE | ID: covidwho-2005271

ABSTRACT

Particle size removal efficiencies for 0.1-1.0 µm ( PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ ) and 0.3-1.0 µm ( PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ ) diameter of Minimum Efficiency Reporting Value (MERV) filters, an electrostatic enhanced air filter (EEAF), and their two-stage filtration systems were evaluated. Considering the most penetrating particle size was 0.1-0.4 µm particulate matter (PM), the PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ as an evaluation parameter deserves more attention during the COVID-19 pandemic, compared to the PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ . The MERV 13 filters were recommended for a single-stage filtration system because of their superior quality factor (QF) compared to MERV 6, MERV 8, MERV 11 filters, and the EEAF. Combined MERV 8 + MERV 11 filters have the highest QF compared to MERV 6 + MERV 11 filters and EEAF + MERV 11 filters; regarding 50% of PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ as the filtration requirements of two-stage filtration systems, the MERV 8 + MERV 11 filtration system can achieve this value at 1.0 m/s air velocity, while PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ values were lower than 50% at 1.5 m/s and 2.0 m/s. EEAF obtained a better PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ in the full-recirculated test rig than in the single-pass mode owing to active ionization effects when EEAF was charged by alternating current.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Air Conditioning , Air Pollution, Indoor/analysis , Filtration , Heating , Humans , Pandemics , Respiration , Ventilation
2.
Sci Rep ; 12(1): 3484, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730308

ABSTRACT

Determining the viral load and infectivity of SARS-CoV-2 in macroscopic respiratory droplets, bioaerosols, and other bodily fluids and secretions is important for identifying transmission modes, assessing risks and informing public health guidelines. Here we show that viral load of SARS-CoV-2 Ribonucleic Acid (RNA) in participants' naso-pharyngeal (NP) swabs positively correlated with RNA viral load they emitted in both droplets >10 [Formula: see text] and bioaerosols <10 [Formula: see text] directly captured during the combined expiratory activities of breathing, speaking and coughing using a standardized protocol, although the NP swabs had [Formula: see text] 10[Formula: see text] more RNA on average. By identifying highly-infectious individuals (maximum of 18,000 PFU/mL in NP), we retrieved higher numbers of SARS-CoV-2 RNA gene copies in bioaerosol samples (maximum of 4.8[Formula: see text] gene copies/mL and minimum cycle threshold of 26.2) relative to other studies. However, all attempts to identify infectious virus in size-segregated droplets and bioaerosols were negative by plaque assay (0 of 58). This outcome is partly attributed to the insufficient amount of viral material in each sample (as indicated by SARS-CoV-2 gene copies) or may indicate no infectious virus was present in such samples, although other possible factors are identified.


Subject(s)
Aerosols , Cough , Respiration , SARS-CoV-2/isolation & purification , Speech , Viral Load , Humans
SELECTION OF CITATIONS
SEARCH DETAIL